Adaptive Automation in Assembly For BLUE collar workers satisfaction in Evolvable context

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 723828

Project results ICAM - Toulouse 20/09/2019

A4BLUE objectives

Put together workers and AUTOMATION mechanisms to take advantage of each others strengths

Put together workers and contextaware ADAPTATIVE ASSISTANCE TOOLS

TO

Increase worker SATISFACTION and workability

Increase productivity and overall PERFORMANCE

Long term socio-economic sustainability

A4BLUE key outputs

Methods & Tools for Sustainability	 Methodology for the definition of the optimal level of automation Methodology for usability and satisfaction assessment Socio Economic assessment framework 				
New or enhanced automation mechanisms	 New: deburring robot and automated tool trolley Enhanced: smart torque wrench, dual arm and logistic robot 				
A4BLUE Reference architecture and implementation	 New interaction mechanisms: verbal and non verbal A4BLUE adaptive framework 				
	 Assistance tools: Context aware on the job training and guidance, decision support system and collaborative knowledge management 				

A4BLUE involves 4 use case scenarios ...

INDUSTRIAL PILOTS

AIRBUS

TOULOUSE, FRANCE

SCENARIO Complex, manual hydraulic system assembly.

WHAT To optimise hydraulic system assembly through the usage of smart tools and Virtual/Augmented Reality.

WHY To evaluate the impact of an adapted AR HMI in terms of performance and error rate for different skilled groups of people and to enable full quality assurance approach and operators performance thanks to traceability.

MADRID, SPAIN

SCENARIO Landing gear retraction actuator assembly: Manual deburring operation | Assembly process.

WHAT To incorporate a robot to assist the worker in the deburring operation | To incorporate AR based guidance based on operator's profile as well supporting knowledge sharing.

WHY To increase the quality, efficiency and ergonomics of the deburring process | To reduce operators training time through AR; to reduce time for reviewing documentation; to increase confidence, participation, and internal communication among the personnel.

LAB PILOTS

SCENARIO Collaborative assembly i	in a fenceless environment.
WHAT To introduce active safety me collaboration; to support personalize natural Human-Automation multi-ch decision support dashboards for qua	ed ergonomic adaptation; to provide nannel interaction; to provide
WHY To evaluate trust, usability and safety, interaction, ergonomics, assi	
RNTHAACHEN	1
RWITHAACHEN UNIVERSITY	AACHEN, GERMANY
RWITHAACHEN UNIVERSITY SCENARIO Final assembly of electr	
UNIVERSITY SCENARIO Final assembly of electr WHAT To incorporate AR based guid	

AUGMENTED WORKPLACE

A4BLUE collaboration dimensions

Worker + Collaborative industrial robot

Deburring process

Deburring robot

 Industrial robot collaborating with process operations to perform the MOST EXHAUSTING phases of the deburring process

Initial situation

- Long, exhausting, repetitive, non added-value manual task
- High physical demands: risk of breathing metal chips, bad ergonomics conditions (i.e. moving heavy parts)
- Results are highly dependent on the operator's expertise

Worker + Collaborative industrial robot

Resulting benefits

- **Improved efficiency:** increases productivity while maintaining quality (i.e. 100 min reduction of manual work)
- Reduced process variability
- Improved working conditions: increases ergonomic and safety conditions and reduces physical demands
- **Opens up job opportunities:** the level of required expertise is lowered
- Increased worker satisfaction

Identified actions

 New added value competences required → scheduled training in robot programming for the operators

A4BLUE

Worker + Collaborative mobile robot

Automated tool trolley

• Provides on demand tooling

Logistic robot

• Transports parts from/ to the warehouse

- Improved efficiency: reduction of displacements
- Reduced physical demands
- **Opens up job opportunities** to people with some kind or physical or sensorial limitations

Worker + context aware adaptive automation

Adaptation to process variability

Automatic configuration of the process
 parameter

Resulting benefits

Increased quality

A4BLUE

Adaptation to human variability

• Ergonomic positioning based on workers 'characteristics

- Reduced physical demands
- Increases safety
- Opens up job opportunities

Tool Trolley HMI

Dual Arm HMI

Worker + multimodal interaction

Multimodal interaction with Tool Trolley

- Voice commands for long range steering
- Gesture commands for short range navigation
- Follow-me function for ergonomic improvements
- AR-supported navigation and trajectory visibility

Multimodal interaction with robots and MES

- Voice commands: natural speaking
- Gesture commands

- Improved efficiency: reduction of displacements
- Reduced physical demands
- Opens up job opportunities to people with some kind or physical or sensorial limitations

Worker + AR based on-the-job guidance

On the job guidance

• Context aware information: based on the operation being performed and the profile of the worker

- Improved traceability: completion of all the steps is registered.
- Reduces training duration
- Opens up job opportunities to less experienced workers,

SOIPROCESSFOLLOWUP					
SOI PROCESS FOLLOW UP					/
JobOrder	OperationDescription	OperationID	Status 🛧	StatusID	Timestamp
JO_sci001	Preparer serrage au couple gauch	e soi.001-Task_01_04_00	Finished		2019-09-09T10.11:23Z
JO_soi001	Preparer serrage au couple gauch	e soi.001-Task_03_04_00	Finished		2019-09-09T10:14:17Z
JO_soi001	Preparer serrage au couple gauch	e soi.001-Task_05_04_00	Finished		2019-09-09T10.14:37Z
JO_soi001	Serrer le raccord gauche au coup	soi.001-Task_03_04_01	Finished		2019-07-17T08.32-48Z
JO_soi001	Serrer le raccord gauche au coup	soi.001-Task_05_04_01	Finished		2019-07-18T12-19-28Z
JO_soi001	Serrer le raccord gauche au coup	soi.001-Task_01_04_01	Finished		2019-07-17T08:32:48Z
JO_soi001	V <c3><a9>rifier tous les tuyaux</a9></c3>	soi.001-Task_000_02	Finished		2019-07-17T08-32:13Z
JO_soi001	De-serrer le raccord droit	soi.001-Task_01_05_02	Pending		
JO_soi001	De-serrer le raccord droit	soi.001-Task_02_05_02	Pending		
JO_soi001	De-serrer le raccord droit	soi.001-Task_03_05_02	Pending		

A4BLUE

Worker + Decision support tools

Definition of the optimal level of automation

• Based on the optimization of process costs and worker satisfaction

Resulting benefits

Considers socio economical aspects

Worker + Worker

Best practices management

- Knowledge sharing between workers
- Takes advantage of expert workers knowledge
- Different GUIs supported: web based and AR based
- Context aware information: based on the operation being performed

- Improved efficiency: increased productivity due to reduced time to solve issues during the process
- Supports less experiences workers, reduces training time

Future Vision

A4BLUE main breakthroughs

Digital Technologies will bring us toward the Autonomous and Hyper-connected Factories

Human Factors will remain crucial for the next generation factories

Humans and Digital Technologies experts need to join forces

Clear Skill pathways and Assistance technologies will help us on becoming augmented worker (operator 4.0)

Exploit proactive and open collaboration among all the involved stakeholders (Multi-Actor approach is needed!!)

A4BLUE

http://a4blue.eu/

Adaptive Automation in Assembly For BLUE collar workers satisfaction in Evolvable context

