Adaptive Automation in Assembly For BLUE collar workers satisfaction in Evolvable context

SPS ICP Drives Italia

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement n° 723828 Continuous adaptation of work environments with changing levels of automation in evolving production systems

Parma, 24-05-2017

Adaptive Automation in Assembly For BLUE collar workers satisfaction in Evolvable context

Project ID: 723828

- **Topic:** FOF-04-2016 Continuous adaptation of work environments with changing levels of automation in evolving production systems
- **From**: 01-10-2016
- **To**: 30-09-2019

A4BLUE

Consortium

A4BLUE **aims**

 to develop and evaluate a new generation of <u>sustainable</u>, <u>adaptive</u> workplaces dealing with evolving requirements of manufacturing processes (i.e. short & long term changes);

2) to introduce automation mechanisms that are suitable for flexible and efficient task execution in <u>interaction</u> with human workers and by optimising human variability through personalised and context aware assistance capabilities as well as advanced human-machine interfaces.

Specific objectives

To support this objective the key features are:

- Adaptability: by providing an open, secure, configurable, scalable and interoperable adaptation management and assistance system (A4BLUE adaptive framework) that allows effortless integration of heterogeneous hardware and software components and is able to adjust the behaviour of workplace parts according to changes;
- 2) Interaction: by providing a set of safe, easy to use, intuitive and personalised and context aware multimodal human-automation interaction mechanisms;
- 3) Sustainability: by providing methods and tools to determine the optimal degree of automation of the new assembly processes that combine and balance social and economic criteria to maximize long term worker satisfaction and overall performance.

A4BLUE

Reference implementation

FACTORY LEGACY SYSTEMS

ERP, MES, CMMS ...

Validation: use case applications

Use case applications

Use cases

Lab scenarios

INDUSTRIAL SCENARIO #1 – AIRBUS: towards a next generation hydraulic system assembly through automation and virtual/augmented reality

BC#1 AIRBUS: Challenges

Challenges	Scope	Description
CH1.1 Adapted on the job guidance	Human, process & context variability	A4BLUE should provide on the job guidance adapted to both the specific worker and operation involved. Both the way the information is displayed to the workers and the AR device to display such information should be considered.
CH1.2 Adaptation of the tools involved in the assembly process	Process variability	A4BLUE should support the automatic adaptation of the parameters of the tools involved in the assembly process considering both the operation being performed and the related standard operating instructions.
CH1.3 Decision support	Process variability	A4BLUE should support the Quality Inspector to secure a full quality assurance approach by making available in-real time the information collected from the smart tools (not available in the current process) during the assembly; avoiding to manually control the executed task, ease the error detection and then correction, measure the realization time to ensure time and quality delivery

INDUSTRIAL SCENARIO #2 – **CESA:** Assembly and auxiliary operation of the main landing gear retraction actuator

Deburring process video

BC#2 CESA: Challenges

SC2.1 Deburring (auxiliary)

Challenges	Scope	Description
CH2.1	Process variability	A4BLUE should increase productivity and reduce deburring operation time. The
Including automation mechanisms		operator can use this time in a more effective way.
in manual deburring process		A4Blue solution should reduce dependence on manual work to increase quality.
CH2.2	Safety and worker	Deburring operation is a repetitive and boring task, which can be very long, so to
Safety and ergonomics	satisfaction	provide a solution that can support the operator in the performance of the task can be
		very beneficial to him and should improve ergonomics conditions of operators.
		A4BLUE should improve safety conditions, Reducing the risk which the operator is
		exposed during the operation (contact with deburring tools, particles from the part).

SC2.2 Main landing gear assembly

Challenges	Scope	Description	
CH2.3 Information and documentation fragmentation	Process variability	A4BLUE should provide the operator a one stop solution that provide all the information to perform the specific on going operation.	
CH2.4 Training	Human & Process variability	A4BLUE should involve on the Job trainig capabilities, based on AR solutions and involving multi modal interaction mechanisms to support the adaptability of the training and the provision of technical Instructions.	
CH2.5 Knowledge management	Human & Process variability	A4BLUE should provide collaborative knowledge management capabilities.	

LAB SCENARIO #3 – IK4-TEKNIKER: collaborative assembly of latch valve

Video

Collaborative assembly of a latch valve in a fenceless environment, including auxiliary activities as initial preparation activities, final inspection and transport of the finalised part to the warehouse.

BC#3 - IK4-TEKNIKER: Challenges

Challenges	Scope	A4BLUE support
CH3.1 Adaptation to worker's profile	Human variability	 A4BLUE: a) should launch parametric programs that consider the anthropometric characteristics of the operator that is performing the collaborative assembly with the robot (i.e. the one that is logged in) so the position of the sub-assembly varies on worker's profile. b) should include multimodal interaction (verbal and not verbal) to support different workers' capabilities or preferences.
CH3.2 Adaptation of the robot behaviour based on safety related criteria	Context variability	A4BLUE should involve enhanced active safety mechanisms to adapt robot behaviour (e.g. robot speed) to different context situations as for example detection of animate/inanimate obstacles, prediction of the intention of animated obstacles.
CH3.3 Adaptation of on the job guidance	Context & human variability	A4BLUE should provide on the job guidance adapted to both the specific worker and operation involved.
CH3.4 Integration with legacy systems	Process variability	A4BLUE will be able to collect information/events from the factory level MES (i.e. operator log in/logout; order start/end; bad/good register; downtime register, etc.). Furthermore, the latest version of the technical instruction should be available.
CH3.5 Integration of auxiliary activities (i.e. maintenance, quality)	Process variability	A4BLUE should notify relevant stakeholders of relevant information to accomplish their assigned task (e.g. provide information and notifications to quality supervisor or maintenance technician if defects or failures are detected).
CH3.6 Adaptation to new trends	Process variability	The mobile robot should be integrated with the A4BLUE adaptation manager to provide relevant information on is status and location and should receive commands from A4BLUE to navigate to the appropriate location to perform its assigned activities (i.e. collect parts from the collaborative work cell and transport them to the warehouse).

UC RWTH: Selected Use Case Scenarios

1 AR/AV Solutions

 Use of AR/ AV to provide assembly instructions to the worker

2 Automated tool trolley

 Adaption of autonomously driving tool trolley in terms of gesture/ voice steering

Video

BC#4 – RWTH: Challenges

SC4.1 Wing and bonnet assembly (AR)

Challenges	Scope
CH4.1 Adaptation to worker's experience	Human variability/ worker satisfaction
CH4.2 Training of inexperienced workers	Human variability
CH4.3 Picking individual variant parts	Process variability/ worker satisfaction
CH4.4 Picking joining parts	Process variability
CH4.5 Adjusting wing to correct gap size	Process complexity
CH4.6 Integration of auxiliary activities (i.e. maintenance, quality, quality assurance)	Process variability
CH4.7 Determining the optimal level automation	Automation

SC4.2 Mobile tooling supply (auxiliary)

Challenges	Scope
CH4.8 Minimizing non-valuable ways	Process efficiency
CH4.9 Improving ergonomics	Worker satisfaction, ergonomics
CH4.10 Enhancing area efficiency	Process efficiency
CH4.11 Error prevention	Worker satisfaction
CH4.12 Transparent decision on adaptive automation	Automation/ Worker satisfaction

Project benefits | Sectors

Impact

- **20%** increase in adaptability, e.g. product customisation capability
- **10%** quality increase in human and automation performance, e.g. quality or productivity
- Wide adoption of the new developments in advanced manufacturing systems
- The A4BLUE solution will be instantiated and validated in two real industrial scenarios (AIRBUS and CESA) and in two lab scenarios (IK4-TEKNIKER and RWTH Aachen)

Sectors

Industry 4.0

A4BLUE

Stakeholder analysis

91 responses collected, by LE and SME (67% both)

Data analysis – AS IS situation

Low-medium level of automation (74% both)

Data analysis – AS IS situation

Main limitations vs key facilitators

Data analysis – Responders point of views

Adaptive automation solutions – TO BE scenario

Adaptive Automation in Assembly For BLUE collar workers satisfaction in Evolvable context

Jon Larreina jon.larreina@tekniker.es

THANK YOU